### Current browse context:

physics.class-ph

### Change to browse by:

### References & Citations

# Physics > Classical Physics

# Title: Can the power Maxwell nonlinear electrodynamics theory remove the singularity of electric field of point-like charges at their locations?

(Submitted on 12 Mar 2021)

Abstract: YES! We introduce a variable power Maxwell nonlinear electrodynamics theory which can remove the singularity of electric field of point-like charges at their locations. One of the main problems of Maxwell's electromagnetic field theory is related to the existence of singularity for electric field of point-like charges at their locations. In other words, the electric field of a point-like charge diverges at the charge location which leads to an infinite self-energy. In order to remove this singularity a few nonlinear electrodynamics (NED) theories have been introduced. Born-Infeld (BI) NED theory is one of the most famous of them. However the power Maxwell (PM) NED cannot remove this singularity. In this paper, we show that the PM NED theory can remove this singularity, when the power of PM NED is less than $s<\frac{1}{2}$.

Link back to: arXiv, form interface, contact.